On the theta number of powers of cycle graphs
نویسندگان
چکیده
We give a closed formula for Lovász’s theta number of the powers of cycle graphs C k and of their complements, the circular complete graphs Kk/d. As a consequence, we establish that the circular chromatic number of a circular perfect graph is computable in polynomial time. We also derive an asymptotic estimate for the theta number of C k .
منابع مشابه
The upper domatic number of powers of graphs
Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...
متن کاملDomination number of graph fractional powers
For any $k in mathbb{N}$, the $k$-subdivision of graph $G$ is a simple graph $G^{frac{1}{k}}$, which is constructed by replacing each edge of $G$ with a path of length $k$. In [Moharram N. Iradmusa, On colorings of graph fractional powers, Discrete Math., (310) 2010, No. 10-11, 1551-1556] the $m$th power of the $n$-subdivision of $G$ has been introduced as a fractional power of $G$, denoted by ...
متن کاملDistinguishing number and distinguishing index of natural and fractional powers of graphs
The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$ such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial automorphism. For any $n in mathbb{N}$, the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...
متن کاملEntanglement-assisted zero-error capacity is upper bounded by the Lovasz theta function
The zero-error capacity of a classical channel is expressed in terms of the independence number of some graph and its tensor powers. This quantity is hard to compute even for small graphs such as the cycle of length seven, so upper bounds such as the Lovász theta function play an important role in zero-error communication. In this paper, we show that the Lovász theta function is an upper bound ...
متن کاملEntanglement - assisted zero - error capacity is upper - bounded by the Lovász θ function
The zero-error capacity of a classical channel is expressed in terms of the independence number of some graph and its tensor powers. This quantity is hard to compute even for small graphs such as the cycle of length seven, so upper bounds such as the Lovász theta function play an important role in zero-error communication. In this paper, we show that the Lovász theta function is an upper bound ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Combinatorica
دوره 33 شماره
صفحات -
تاریخ انتشار 2013